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Two-dimensional bubbles in slow viscous flows 
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The representation of a biharmonic function in terms of analytic functions is used 
to transform a problem of two-dimensional Stokes flow into a boundary-value 
problem in analytic function theory. The relevant conditions to be satisfied a t  
a free surface, where there is a given surface tension, are derived. 

A method for dealing with the difficulties of such a free surface is demonstrated 
by obtaining solutions for a two-dimensional, inviscid bubble in (a )  a shear flow, 
and (b )  a pure straining motion. In both cases the bubble is found to have an 
elliptical cross-section. 

The solutions obtained can be shown to be unique only if certain restrictive 
assumptions are made, and if these are relaxed the same methods may give 
further solutions. Experiments on three-dimensional inviscid bubbles (Rum- 
scheidt & Mason 1961; Taylor 1934) demonstrate that angular points appear in 
the bubble surface, and an analysis is presented to show that such a discontinuity 
in a two-dimensional free surface is necessarily a genuine cusp and the nature of 
the flow about such a point is examined. 

1. Introduction 
The solution of problems of steady, Newtonian fluid flow involving free sur- 

faces, whether attempted analytically or numerically, presents difficulties arising 
from the (u priori) unknown boundary position. During investigations into such 
flows, a method was developed which seems to cope with this complication for 
the case of two-dimensional, slow flows. The method is based on the representa- 
tion of a biharmonic function by means of analytic functions. This representation 
is used extensively in plane elasticity theory (Muskhelishvili 1963) and par- 
ticular mention should be made of a series of papers by Cherepanov (for example, 
1963u, 6 ,  1964) where the method is applied to problems of elastic/plastic; 
behaviour involving an initially unknown elastic domain. 

Applications of the technique to two-dimensional Stokes flows with fixed 
boundaries have been made by a number of authors. Krakowski & Charnes 
(1953) use the method in a discussion of the Stokes paradox, and a derivation 
of the basic formulae is given in the book by Langlois (1964). In  the context of 
free surface flows, Clarke (1966, 1968) has used this complex variable formalism 
in a discussion of the free fall of a viscous jet under gravity. During the course 

t Present address : Department of Mathematics, University of Manchester Institute of 
Science and Technology. 
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of thiswork, apaper appeared by Garabedian (1966), where the relevant equations 
for free surface flows are presented. The solutions there given are obtained by 
inverse methods and, as with Clarke’s work, surface tension is taken to be zero 
throughout. 

Below, the boundary conditions to be satisfied a t  a free surface where there is a 
surface tension, T, are derived. The effects of gravity are not included here, but 
can be incorporated within the scheme as in Clarke (1966). The formulation is 
then used to solve for the flow around a two-dimensional, inviscid bubble in (u) a 
shear flow, and ( 6 )  a pure straining motion (sometimes referred to as a hyper- 
bolic flow). A discussion of the uniqueness of these solutions and the possibility 
of the existence of angular points in a two-dimensional free surface is included. 

2. Derivation of the equations 
Suppose a two-dimensional flow in the Cartesian (x, y)-plane has velocity 

components (u, v). If the fluid is incompressible, then a streamfunction $(x, y) 
exists such that 

For steady flow at zero Reynolds number, @ satisfies the biharmonic equation 

(2.2) 

and so admits the representation 

lC.h Y) = Re{%%) +x(z)h 

where #(z )  and ~ ( z )  are functions of the complex variable z = x+iy  which are 
analytic within the flow domain (cf. Muskhelishvili 1963, p. 109). An overbar is 
here used to denote the complex conjugate. 

From this (see Langlois 1964), the velocities are given by 
_ _ ~  

- v + iu = #(z) + x$’(z) + x’(z) ,  

Pxx + Pyy = - 2P = QIm { # r ( Z ) l ,  

i(Pyy - Pxx) - 2PW = 4/4%5”(2) + x”(z)), 

o = - 4 Re{$’(z)), 

(2.3) 

the stress components pij and pressure p (in the absence of body forces) by 

(2.4) I 
where ,u is the viscosity, and the vorticity w by 

(2.5) 

where a prime on a function denotes differentiation with respect to the stated 
argument. 

For the slow motion of any material free from body forces, the divergence of 
the stress tensor must vanish. This implies (Muskhelishvili, p. 104) the existence 
of an Airy stress function U(x ,  y) such that 

U is determined by a given stress field only up to a linear function of x and y. 
Since the pressure is a harmonic function in Stokes flows, it follows, from (2.4), 
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that U is a biharmonic function and admits a representation similar to  that in 
(2.2) for @. Moreover, comparison with (2.4) shows that this representation can 
be taken as U = 2pIm {i i$(z) + ~ ( x ) ) .  (2.7) 

An examination of (2.3) and (2.4) shows that given velocity and stress fields 
define $ ( z )  and ~ ( z )  uniquely up to the addition of a term y1 to $ ( x )  and a term 
- Y1z + yz to ~ ( z ) ,  where y1 and y2 are complex constants. 

Consider now a directed line AB in the fluid. The force (X,ds,Y,ds) exerted 
across a line element ds, by fluid on the left on fluid on the right, is given by 

_ _ -  
( X ,  + iY,) as = 2p d ( $ ( x )  - Z$'(Z) - x' (2) ) .  (2.9) 

This is conveniently derived from (2.7) as in Muskhelishvili (1963, p. 113) or 
more directly from (2.4) as in Krakowski & Charnes (1953). 

Suppose now that AB is a section of the fluid surface at  which a surface tension, 
T, acts, and that there is zero pressure just outside. Then (X,ds,Y,ds) is a force 
of magnitude TKds directed along the outward normal to the surface, where 
K = d Y / d s  is the curvature at  that point (see figure 1 for notation). Thus 

(X,+iY,)ds = TKds(-sinY+icosY) = Td [:I - . 

Equating this to (2.8) and performing an integration, weobtain the condition to be 

Y 

B 

\ 

Vacuum / \ ' \  \ \ 

X 

FIGURE 1. Sketch establishing notation for the derivation of the boundary 
conditions at a free surface. 
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satisfied at the free surface as 
T ax _ _ _ _  

$ ( z )  - z$‘(z)  - x ’ ( 2 )  = - - 
2pds‘ 

(2.10) 

The constant of integration which arises here can be made to vanish, on one free 
surface, by a suitable choice of 7,. If more than one free surface is present, there 
must be constants added to (2.10) for all but one surface and these constants 
must be determined during the solution. In particular cases, when information 
is known concerning the forces acting across a line joining two free surfaces, the 
constants may be related apriori, using (2.8). 

In  steady flow, the surface is also a streamline so that @ is a constant along it. 
Differentiating (2.2) along the surface gives 

(2.11) 

This can also be seen from (2.3) as a consequence of zero normal velocity at the 
free surface. (2.10) can now be used to simplify (2.1 1) to 

T 

Multiplying (2.10) by d2/ds and using (2.12) to eliminate (dx/ds)$(z) we get 

a2 d2 ax 
as as as 

$(z ) -+Z$ ’ (Z) -++ ’ (Z) -  = 0. 

This now integrates to give 

(2.12) 

(2.13) 

(2.14) 

Here yz has been chosen to make the integration constant vanish on one free 
surface and similar remarks regarding other possible surfaces apply as for (2.10). 
Relation (2.14) merely states that both the streamfunction and Airy stress 
function may be chosen to vanish on one free streamline. 

The boundary conditions on the surface will be used in the form of (2.12) and 
(2.14). Relation (2.3) provides the boundary conditions to be satisfied on a solid 
surface, so that a problem of two-dimensional Stokes flow can be formulated as a 
boundary-value problem in analytic functions. 

A word of warning is, perhaps, in order concerning these free surface conditions. 
Their form makes it tempting to regard (2.12) as the ‘normal stress condition’, 
with the imaginary part of (2.14) providing the ‘zero shear stress condition’, but 
this decomposition is incorrect. It is only possible to deduce (2.14) when the 
normal stress has the special form demanded by surface tension. 

The flow about a two-dimensional bubble involves a doubly connected flow 
domain with a few consequent complications (Krakowski & Charnes 1953). 
Suppose this domain comprises the exterior of a simply connected region which 
contains the origin of the x-plane. Since p and w represent physical quantities, 
(2.4) and (2.5) imply that $ ( z )  is single-valued within the flow, so that 

&4 = A,  1% + $ 0 ( 4 ,  (2.15) 

where A ,  is a complex constant and #o(z)  is analytic and single-valued in the flow 
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region. The single-valued nature of the velocity components then implies, via 

x ( z )  = A,Z log 2 + A ,  log 2 + xo(z) ,  (2.16) (2.3), that 

where A ,  is a complex constant and xo( z )  is analytic and single-valued in the 
flow region. The term multiplying A ,  in x ( z )  gives rise to zero velocity a t  infinity. 
However, the terms multiplying A ,  in $(z )  and ~ ( z )  give infinite velocities at 
large distances. The Stokes paradox for a uniform streaming flow past a two- 
dimensional solid arises because the conditions to be satisfied at the body 
necessarily imply A,  9 0, so preventing the requirements at infinity from being 
satisfied (see Krakowski & Charnes 1953; Proudman & Pearson 1957; Bretherton 
1962). In  the case of flow around bubbles this difficulty does not arise and in the 
following A ,  is taken to vanish. 

3. Two-dimensional bubble in a shear flow 
Consider now a two-dimensional bubble placed within a shear flow. An axis 

will exist such that a rotation about it through 180" will leave the situation 
unchanged. With this point as the origin of the z-plane and the x-axis aligned 
along the flow direction the situation is as in figure 2. 

FIGURE 2. Co-ordinate system for the bubble in the shear flow. 

With the dominant shear flow a t  infinity as (ky, 0)  this requires 

and as 

where p m  is the (unknown) pressure a t  infinity resulting from zero pressure within 
the bubble. As T --f co the bubble will become circular and p a  --f - co, so that care 
needs to be exercised in taking this limit finally, for $(z )  is then ill-defined. 
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However, if the physical quantities of interest are first evaluated and then the 
limit taken, no difficulties arise. This problem could be avoided by taking the 
pressure within the bubble to be proportional to T, but this is an unnecessary 
complication, as the free surface conditions are simplified by taking it to be zero. 
An arbitrary constant pressure superposed on the whole field does not alter the 
dynamics of the situation, so that the negative pressures which arise here are 
merely a result of the exploitation of this mathematical simplification and their 
physical reality is not implied. 

By Riemann’s theorem, there exists a conformal transformation of the flow 
region onto the exterior of the unit circle in the [-plane, given by z = w(C), where 
w(6) is analytic in 1[J 2 1 for a smooth bubble outline. Moreover, this mapping 
is unique if we require w(C) - ucas /el+ co where a is a real constant. a obviously 
relates to the bubble size and may be regarded as given for the present. The 
symmetry of the problem implies 

w ( - 5 )  = -w(C). (3-2) 

Defining @(C) = $Qw(C)) and = x(w(C)), (3.3) 

these are both analytic functions of [in 2 1, while 

The two boundary conditions (2.14) and (2.12) on the bubble transform into 
two conditions to be satisfied on the unit circle 151 = 1 (I? say), viz. 

Equations (3.4), (3.5) and (3.6) are to yield w(<), @(() and X(y) in > 1 and 
thence the solution. 

If [ is in the exterior of I?, then l/c is in the interior at the inverse point, and 
vice versa. As one of them tends to a point on r from within, the other tends to 
that same point from without. Moreover, if Q(<) is an analytic function of [ in 
the exterior, Q(1/c) is an analytic function of 5 in the interior, and vice versa. 
Consequently, (3.5) implies that the analytic continuation of w(6) into the in- 

F 

Since there exists the possibility that X( l /C)  has a logarithmic branch point a t  
5 = 0,  i t  seems, a priori, that w(c) could have a branch point there. However, 
this is not possible for it would necessarily imply a second branch point of w([), 
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either in 161 < 1 or on 161 = 1. The first alternative is untenable because it im- 
plies a branch point of X({) in 1[1 > 1, and the second because it would make the 
mapping non-conformal at the bubble surface. It follows, therefore, that the only 
singularities of w(<), besides the simple poles a t  5 = 0 and 03, are poles at  points 
within I? such that @(g) has a zero at the inverse point. Also, the logarithmic term 
in (2.16) for x(x)  must vanish, i.e. A ,  = 0. 

Replacing 5 by I/{ and taking the conjugate in (3.7) we get 

X(<) = -w(l /c)@(<) throughout 151 > 1. 

This now determines X(c) when w(c) and @(<) are known. 
The second condition to be satisfied on J?, i.e. (3.6), can be written 

(3.9) 

This allows a([) to be analytically continued into 1<1 < 1 exactly as the first 
condition allowed w(5)  to be so continued, and then furnishes the functional 
relation, valid throughout the [-plane, 

(3.10) 

The first term on the left-hand side is analytic and single-valued in I CI 2 1, and 
the second in I(;) < 1. The right-hand side has, in general, branch points at the 
zeros and odd-order poles of ~ ’ ( 6 )  (all in 151 < 1)  and at  the points inverse to these 
with respect to the unit circle. If the zeros of ~ ’ ( 5 )  have even order, the branch 
points degenerate to poles, but this need not be treated as a special case. Thus 
the right-hand side of (3.10) can be made analytic in the [-plane by introducing 
two sets of branch cuts-one set in the interior of connecting the zeros and 
poles of w’(5), and the second set in the exterior connecting those of w’(l/c). 
Since this right-hand side is O( 115) as 151 +coy a consideration of 

-~ 

(3.11) 

where C,, is a contour in the t-plane comprising the circle at infinity described 
anti-clockwise, together with a contour described clockwise around each set of 
branch cuts of the integrand, gives the decomposition 

(3.12) 

(3.13) 
F-(c) = Ic+(Y) is analytic in IC]  < 1, 

C- and C, being contours around the branch cuts in It1 < 1 and It1 > 1 respec- 
tively, both described clockwise. The flow region corresponds to )[I > 1 and, for 

ICl 
where P+(<) = lc-(c) is analytic in 

31 Fluid Mech. 33 
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5 in this region, a deformation of contours allows F+(C) to be written as 

(3.14) 

where I" is the unit circle in the t-plane traversed anti-clockwise. Writing t = eie 
allows this integral to be simply put in terms of real integrals. A similar defor- 
mation gives 

and again a simple evaluation is possible. (3.10) can now be written as 

(3.15) 

(3.16) 

The left-hand side is analytic in 151 3 1 and tends to )k( 1 +ic) as -+a. The 
right-hand side is analytic in 151 < 1 and tends to #( 1 - ic) + ( ~ i / 2 ~ a )  FJO) 
as 151 + O .  
It follows, by Liouville's theorem, that both sides are equal to one and the same 

and 
T 

(3.17) 

(3.18) 

Equation (3.17) determines a({) when w(5) is known and (3.18) provides a 
restriction on ~ ( 5 ) .  Note that the definitions imply that - 

F+(l/C) = F-(C) -F-(Oh (3.19) 

so that (3.17) follows from putting either side of (3.16) equal to the constant. 
For infinite surface tension, the bubble may be expected to become circular, 

with only the zero shear stress condition applicable at  its surface. This problem 
can be solved by a straightforward separation of the variables in the biharmonic 
equation and leads to the solution 

?+h = gk(r2 - d) ( 1  - COB 20), (3.20) 

where ( r ,  0) are the usual polar co-ordinates. When translated into the complex 
variable form, this yields no zeros of a([) in 151 2 1. In fact, bearing in mind that 
p ,  + - 00 in this limit, condition (3.4) alone implies that the only zeros of a([) 
are then at the origin. 

The opposite extreme of zero surface tension, when the bubble degenerates to a 
slit along the real axis, can also be solved separately (appendix A) and gives a 
pair of zeros of @,(p) just on the unit circle at = rt 1 (corresponding to the cusps 
on the bubble), coinciding with zeros of X(5). 

It would therefore seem reasonable, in the general case, to expect a solution 
in which @(c) has no zeros in ICI =- l.t It then follows that w(c)  has 

t This condition is not, in fact, essential for the validity of the solution to be obtained. 
The method of construction ensures that any zeros of @(c) in 1 < 1  2 1 coincide with zeros 
of WC). 
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the form w(5) = a(5+y2/5), where y2 = - (3 .21)  

Iy12 < 1 ensures that the mapping is conformal in the flow domain. (3 .15 )  is then 

1 
1 - i c '  

(3 .22 )  

Transforming by ys = t ,  deforming the contour in the s-plane to run either 
side of the branch cut from - 1 to + 1 ,  and using the symmetry properties of the 
integrand we have 

where K(m)  is the complete elliptic integral of the first kind defined by 

as K(m)  = S' 0 ( 1 - S2)* ( 1  - mV)* 

(3 .23 )  

(3 .24)  

This function is tabulated with argument m2 in most of the standard tables of 
mathematical functions (e.g. Jahnke, Emde & Losch 1960),  while Fletcher (1940)  
tabulates with argument m. Incidentally, the reverse procedure, expressing 
K ( m )  in a form simiIar to (3 .22) ,  would seem to be an ideal method for evaluating 
it numerically, as this avoids the singularity of the integrand in (3 .24 )  on the 
path of integration. 

Equation (3 .18)  now assumes the form 

2 T  
napk 

c = -K( [ l+C2] -* ) .  (3 .25)  

The function K( [ 1 +  ~ ~ 1 - 4 )  is sketched in figure 3,  from which it can be seen that 
(3 .25)  has just one root c for each value of the surface tension parameter 
Z = T / a p k .  For Z > 0, this gives c > 0; i.e. a positive surface tension implies 
negative pressures at infinity. As Z+m, then c-too and y2+0 so that the 
bubble becomes circular. As Z +  0, then c-+ 0 and y2-+ 1 so that the bubble 
becomes a slit. 

The mapping (3 .21 )  with y2 = pe2@ gives an ellipse with its major axis inclined 
a t  an angle q5 to the flow direction, and a deformation D = p, where 

major axis - minor axis 
major axis +minor axis ' 

D =  ~ _ _ _ _  (3 .26 )  

The special form of y2 implies that it lies in the upper half of the complex plane 
on the semi-circle with diameter the segment (0 , l )  of the real axis so that 

D = ~ 0 ~ 2 4 .  (3 .27 )  

A sketch of the streamlines for the case c = 3 ,  corresponding to Z = 2.923, 
D = 0-316, q5 = 36", is given in figure 4. The streamlines are contoured at equal 
intervals of the square root of the non-dimensional streamfunction t,hlka2, and 
the pattern here is typical for other values of 2. In  particular, there are two zero 

31-2 
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0 1.0 2.0 3 0  

FIGURE 3. Variation of the function K([1 +c2]-4). 

C 

FIGURE 4. Sketch of the streamlines around. a bubble in a shear flow for the case e = 3, 
corresponding to Z = 2.923, D = 0.316, q5 = 36". The streamlines are drawn at equal 
increments of the square root of the streamfunction, the numbers giving the value of 
v+./ka2) *. 
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streamlines on each side of the bubble and these enclose a (very weak) circula- 
tion. In  the limits Z - t O  and Z+m, these streamlines coalesce. Further details 
are given in appendix C. 

4. Two-dimensional bubble in a pure straining motion 
Consider now the two-dimensional bubble placed at the origin in the pure 

straining motion u = (Cx, -Cy), where C > 0. Such a flow is equivalent to a 
rigid rotation superposed on a simple shear of magnitude k = 2C, so that, for 
nearly circular bubbles, there is an equivalence with the preceding problem 
(cf. Taylor 1934). 

Now, with a notation paralleling that of 5 3, 

Proceeding exactly as before, the mapping will now have the symmetries 
__ 

w(S) = - w( - 5 )  = W ( Q  (4.2) 
In  the c-plane, 

iC 6; X(g) - -3a2 Y as lSl--. (4.3) @(Y) - z a  
iPa3 

The continuation of w(5) into the interior of I? now yields 

so that (3.17) and (3.18) are replaced by 

and - T 
Pa3 = -F-(O). a (4.7) 

Again the two limiting cases can be evaluated separately. The circular bubble 
at infinite surface tension gives 

$ = &'(r2-a2)sin28. (4.8) 

The zero surface tension limit in this case is very simple, for the basic straining 
motion transmits only a constant normal force across the real axis, so that the 
bubble is again a slit along this axis with no perturbation on the flow. In  this limit, 
the governing equations are invariant under a reversal of the velocities, so that 
there is also a solution with the bubble as a slit along the imaginary axis, but this 
is evidently a singular solution, 
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In  both these limiting cases the solutions in terms of complex variables show 
no zeros of @([) in 15) > 1 so that w(5) in general can be expected to have the form 

where is real, 

so that the bubble is an ellipse aligned along the real axis. 
Equation (4.7) now determines y2 by 

:T 
- K( y2). 

1 _ -  
y2 rapC 

(4.9) 

(4.10) 

The sketch of K(y2)  in figure 5 shows that this has just one root for each value 
of the surface tension parameter Z = 11/2upC and that the behaviour at  the ex- 
tremes of 2 is as expected. Moreover, p ,  < - 2Cp for all positive values of 2. 

Y2 
FIGURE 5. Variation of the function K ( y 2 ) .  

The streamlines for the case y2 = D = 0.3 are sketched in figure 6, and a dis- 
cussion of the behaviour at large distances is contained in appendix B. 

Comparison of (3.25) and (4.10) shows the expected similarity of behaviour for 
nearly circular bubbles, but the behaviours a t  the other extremearevery different. 
From (3.25), ZK(D)+O as Z + O  for the shear flow, but from (4.10), ZK(D)  -tin 
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as Z+O for the straining motion. Thus, in the latter case, care is needed in 
extracting this limit from the solution; for example, the second term on the 
right-hand side of (4.6) does not vanish. 

FIGTJRE 6. Sketch of the streamlines around a bubble in a pure straining motion for the 
case D = 0.3 corresponding to 2 = 3.256. The streamlines are drawn at  equal increments 
of the streamfunction, the numbers giving the value of $/Caz. 

5. The parameter a 

In  the preceding sections, the bubble size has been determined by the para- 
meter a. From the theoretical point of view this is the obvious length scale to use, 
but in a given situation it does not correspond directly to any given length, 
although it differs from the semi-major axis by at most a factor of 2. However, 
any conveniently measured length can always be simply related to a. Suppose, 
for example, that, in the straining motion, the semi-major axis L is measured. 
Then a is determined by L, and vice versa, through 

once the length T / p C  is known. (5.1) has just one root such t'hat a < L < 2a. 

6. Concerning observations on three-dimensional bubbles 
Experiments on three-dimensional bubbles by Taylor (1934) and Rumscheidt 

& Mason (1961) in the two flow situations discussed here, show similarities of 
behaviour, but, as is to be expected, there is no quantitative agreement. A major 
qualitative difference concerns the appearance of angular points or cusps in the 
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bubble surface when the fluid velocities exceed a critical value. A priori, these 
could arise from fi) three-dimensional effects, (ii) higher Reynolds number effects, 
(iii) non-uniqueness of the solution. 

Consider the situation at a theoretical angular point of a free surface in a two- 
dimensional, slow flow, with axes and notation as in figure 7. An examination of 
the flow about such a point has been carried out by Moffatt (1964) with a neglect 

FIGURE 7. Sketch establishing notation for the discussion of behaviour 
at an angular point. 

of the normal stress condition, on the assumption that the motion of a relatively 
inviscid fluid adjacent to the surface could provide the normal stresses necessary 
to give a balance. 

Boundary condition (2.14) implies that 

e-2iEz$(z) + ~ ( z )  = 0 on argz = a 

eziEzq5(z) + x ( z )  = O on argz = -a. 
(6.1)’ 

These two requirements are compatible only if 

a = frnn for integral n. (6.2) 

This shows that a discontinuity in a free surface is necessarily a genuine cusp 
(a = 0 or n). In  this context it should be noted that the remarks in Garabedian’s 
(1966) paper, following equation (65)) purporting to give a solution corresponding 
to a discontinuity with a = in, are incorrect. 

In  the neighbourhood of the cusp (6.1) implies 

X(Z)  = -zq5(z)- (6.3) 

Because of the surface discontinuity it is convenient to apply the remaining 
boundary condition by using the integrated form of (2.8). With A and B points 
on the lower and upper surfaces respectively, this gives 

_ _ _ _  [m -z$’(z)  - X W ] Z  = T / P ,  (6.4). 
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where the left-hand side denotes the difference in the bracketed quantity at  
B and A ,  while on the right-hand side the positive and negative signs corre- 
spond to a = 0 and a = 7~ respectively. 

Using (6.3) this becomes 

This requirement excludes the possibility a = 0 (except for an obviously singu- 
lar solution at T = 0) ,  and for a = 7~ implies a behaviour near the point as 

Ti 
$(x) = __ logz. 

4n-P 

In  terms of the usual polar co-ordinates ( r ,  O), with 8 = 0 along the positive 
x-axis, this gives T 

$ = ~ rlogrsin8. 
27T1u 

Note that this term gives rise to velocities near the point which are in the 
negative x-direction. The radial normal stress component is given by 

and an integration around a circle centred on the origin shows how the flow 
produces the &function behaviour of the force per unit free surface length to 
balance the surface tension forces. 

It should be noted that the logarithmic term needed in the local expansion 
(6.6) is not excluded by the absence of the logarithmic terms from (2.16). As 
pointed out to me by Dr F. P. Bretherton, the analogous three-dimensional 
situation is rather different, for the surface is now approximately conical and the 
surface tension forces per unit area vary as the inverse power of the distance from 
the point (see Taylor 1964). 

At any Reynolds number, an expansion in the neighbourhood of a given point 
necessarily involves the Stokes equations as a first approximation, so that the 
above deduction that any discontinuity must be a genuine cusp remains valid. In  
practice, of course, when the surface becomes cusp-like the material f i h g  the 
bubble must begin to affect the dynamics at  this point, no matter how small may 
be its viscosity compared with that of the surrounding medium. 

The solutions obtained above are unique under the assumption that they are 
to vary continuously with a change in the governing parameter 2, and that the 
limit 2 --f 00 is the expected circular cylinder. Any further solutions must have 
zeros of $(x) within the flow field and may have cusps at the boundary. The 
above methods will give such solutions by relaxing some of the conditions im- 
posed, but they can only be reached from the given solution curves by a discon- 
tinuous jump, presumably as the result of an instability. In  connexion with this, 
Rumscheidt & Mason remark that the transition from rounded to pointed ends 
in their experiments appeared to occur suddenly. 
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7. Concluding remarks 
While the flow fields obtained about the bubbles are correct solutions to the 

Stokes equations, they do not represent uniformly valid approximations to 
solutions of the full Navier-Stokes equations. The situation is, however, less 
disastrous than the analogous case of a rigid cylinder in a uniform stream, when 
there is no solution to the Stokes equations satisfying all the boundary condi- 
tions on the body and at infinity. Here, the dominant velocities at  infinity are of 
order T ,  while the perturbation velocities are of order l / r  (see appendixes B and 
C), so that the ratio of the inertial to viscous terms in the full equation of motion 
is R(r/a)2, where R is a suitably defined Reynolds number. The solutions obtained 
strictly hold only out to a radius o(aR-*) and are evidently the first terms of an 
inner expansion of a matched asymptotic expansion procedure. 

The author would like to thank Dr H. K. Moffatt for advice on the preparation 
of this paper, and Dr A. B. Tayler, whose remarks first led to the inclusion of 
surface tension in the formulation of $ 2 .  The numerical work involved in the 
production of figures 4, 6 and 8 was carried out on the TITAN computer at the 
University Mathematical Laboratory, Cambridge. This research was carried out 
while in receipt of an S.R.C. Research Studentship. 

Appendix A. The zero surface tension limit for the bubble in the shear 
flow 

For the bubble in the shear flow a t  zero surface tension the solution is 

X(5) = - w(5) W).I 
Reverting to the x-plane, the bubble has become 

axis and 
the slit ( -  2a, 2a) on the real 

where the root, varying as z at large distances is chosen in each case. 
An examination of this solution shows that the velocities vanish on the segments 

of the real axis, 1x1 > 2u, so that, considering just the half of the flow field in 
y > 0, this furnishes the solution with a shear flow over a slot in a plane wall. 
The free surface from - 2a to + 2a is now plane, so that this is a solution for any 
value of the surface tension, provided only that the pressures a t  infinity and just 
outside the free surface are equal. A sketch of the flow is given in figure 8. 

A local expansion about the point z = 2a using the usual polar co-ordinates 
(T ,  r9), with 8 = 0 on the fixed surface x > 2a, shows that the dominant term in 
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the streamfunction near this point is 

$ = ka*& sin 6 sin &3, 

agreeing with the analysis performed by Michael (1958) of the flow in the neigh- 
bourhood of such a singularity. The flow about z = - 2a is, of course, of similar 
form. 

Fixed surface 
Free surface Fixed surface 

FIGURE 8. Sketch of the shear flow over a slot in a plane wall when the pressure at large 
distances in the flow is equal to the pressure just outside the free surface. The flow has a 
symmetry about the y-axis. The streamlines are drawn on the left at equal increments of 
the square root of the streamfunction, the numbers giving the value of (@./kaz)*. The 
velocity profiles at  x = 0 and z = 2a are plotted on the right with a velocity La represented 
by a length ha. 

Appendix B. The behaviour at large distances for the bubble in the 
straining motion 

where E(m) is the complete elliptic integral of the second kind defined by 

an expansion for large 1x1 yields 

The first terms here give the required straining motion, while the second add to 
the streamfunction a term 

(B 4) 
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For y2 = 1 this term vanishes, while for y2 -+ 0 it becomes - &Ca2 sin 28 (cf. 
(4 .8 ) ) .  For intermediate values, the coefficient of sin 28 is always negative so that 
the perturbation velocities at  infinity are of order Ca2/r and represent a radial 
outflow in the quadrants -an < 8 < +&r and $ 7 ~  < 6 < Qn with an inflow 
elsewhere. 

Appendix C. The streamlines for the bubble in the shear flow 

in appendix B for the straining motion. 
An analysis of the flow a t  large distances in the shear flow can be carried out as 

Defining now 

there results, for large 121, 

The first terms give the required shear flow, while the second term in $(z )  
gives radial velocities decaying as l /r,  as for the straining motion, but not now 
aligned along the axes. Of greater interest here is the behaviour as x+ k co for 
fixed y. In this limit 

The added constant term vanishes only at  the limits 1 y12 = 1 and JyI2 = 0 and 
for other values the bracketed quantity is strictly negative. The numerical value 
of this added term is -0.00296ka2 for the particular case, c = 3, plotted in 
figure 4, and the numerical coefficient here is always small. It follows that two 
zero streamlines move off to infinity in both positive and negative x-directions. 

A straightforward expansion of the streamfunction in terms of a local radial 
co-ordinate 6, about a point on the bubble surface, shows that, if n zero stream- 
lines join the surface at that point, this expansion has a dominant term 0(Sn+l). 
In  particular, one zero streamline gives rise to a dominant term O(S2) and it must 
meet the surface at  right angles. 

The streamfunction can be written as 

Writing 6 = eib + < where (51 < 1 and performing an expansion for small 161 we 
obtain - 

cw'(<) [a) - w (i) ] = 2a211- yze-zip I 2 R e { e - ip fl)+O(C2)- (C 5 )  

It follows from (3.17) that points where a zero streamline joins the bubble 
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correspond to values of /3 given by the roots of 

This equality can be written more symmetrically as 

Numerical work shows that this always has just four roots: two near B = 0 and 
two symmetrically placed near /3 = n. The streamlines must thus behave as in 
figure 4. In  the limits when y2+ 1 or 0 the four roots coalesce to two at  /3 = 0 and n. 

For the sketches of figures 4 and 6, F+(c) was evaluated in the form (3.14). This 
has the disadvantage that, if any grid points lie close to the bubble surface, a 
straightforward numerical integration here may give a poor approximation. 
However, this gave no trouble; as a check, the formulae were used to provide 
values of the streamfunction within the bubble, so that the plotting routine 
could be allowed to interpolate for the zero streamline of the bubble surface, and 
this gave the ellipse to the accuracy adopted in the working. A more satisfactory 
procedure would be to leave the integrand of I?+(<) in the form of (3.11) and de- 
form the contour in the t-plane to a circle of radius less than unity and just greater 
than Iy 1, but this then requires the extraction of complex square roots, a much 
more time-consuming process numerically than the extraction of the real roots 
involved with (3.14). 
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